Tanker Structure and Hull Failure Strength

Hajime Kawano and Masaru Hirakata, National Maritime Research Institute, Japan.

PAJ-2003 Symposium

Contents;

1.Introduction

- 1 1. Large-scale oil spill accident by tankers
- 1 2. IMO rule movement on tanker structure
- 2.Aging effect of ship hull
 - 2 1. Typical strength degradation by aging
 - 2 2. Hull plate corrosion data properties
 - 2 3. Degrading of longitudinal bending strength
- 3.Failure strength of aging tanker hull
 - 3 1. Basic mechanism of large-scale hull failure
 - 3 2. Case study
- 4.Conclusion

 $\langle \! \! \rangle$

1-1 .Large-scale oil spill accident by tankers

year	ship name	flag state	volume	causes
			(10^3 kL)	
1967	"Torrey Canyon"	Liberia	119	grounding
1972	"Sea Star"	Korea	120	collision & fire
1976	"Urquiola"	Spain	100	grounding
1977	"Hawaiian Patriot"	Liberia	95	foundered at 12yr
1978	"Amoco Cadiz"	Liberia	223	grounding
1979	"Atlantic Empress"	Greece	287	collision & fire
1979	"Independenta"	Rumania	95	collision & fire
1983	"Castillo de Bellver"	Spain	252	fire
1988	"Odyssey"	Greece	132	foundered at 17yr
1989	"Exxon Valdez"	USA.	37	grounding
1991	"ABT Summer"	Liberia	260	Fire
1993	"Braer"	Liberia	85	grounding
1996	"Sea Empress"	Liberia	72	grounding
1997	"Nakhodka"	Russia	6.2	foundered at 26yr
1999	"Erika"	Malta	$10 + \alpha$	foundered at 25yr
2001	"Baltic Carrier"	Marshall Is.	2.5	collision & fire
2002	"Prestige"	Bahama	(4)??	foundered at 26yr

1-2. IMO rule movement on tanker structure History in VLCC structural changes (1)

1-2. IMO rule movement on tanker structure History in VLCC structural changes (2)

Tanker structural regulation by IMO

1954: OILPOL adopted (海洋汚濁防止条約)
1969: Load on top (LOT) system
1971: Tank size limitation
1973: Segregated ballast tank (SBT)

Damage stability

1978: MARPOL 73/78 13E. SBT protective location (PL)

IGS / COW requirement

1992: MARPOL 73/78 13F. Double-hull tanker for new ship

ditto 13G. Existing ship phase out schedule

Alteration of Tank Arrangement

1: Pre-MARPOL (Single Hull)

2: Pre-MARPOL with Tank Size Limitation (Single Hull)

3: MARPOL '73 & '78 (Single Hull)

4: MARPOL '92 (Double-hull)

1-2. IMO rule movement on tanker structure Enhanced Survey Program on tanker structure

Guideline on "Enhanced Survey Program"

IMO resolution A.744 (18) SOLAS chapter XI, regulation 2

- 1) Survey program worked out in advance
- 2) Dry-dock survey
- 3) Overall survey
- 4) Close-up survey
- 5) Thickness measurement

incl. belt gauging →→→ 6) Corrosion preventive system (coating) 7) survey report file on board

1-2. IMO rule movement on tanker structure *Phase out of single hull tankers*

MEPC46 revision to MARPOL regulation 13G.

Category of tanker (crude and dirty oil)	New phase out schedule				
Category-1					
Non-double hull (Pre-PL/SBT) oil tankers	Withdrawn between 2003 - 2007				
Built before 1982	Beyond 2005, CAS requirement				
20,000 DWT and above					
Category-2	Withdrawn between 2003 - 2015 by				
Non-double hull (PL/SBT) oil tankers	arriving at 25 years of age				
Built during 1982 ~ 1996	Final use 2015				
20,000 DWT and above	Beyond 2010, CAS requirement				
Category-3					
Non-double hull oil tankers	Withdrawn between 2003 - 2015				
5,000~20,000 DWT	Final use 2015				

(Note) CAS; Condition Assessment Scheme

Aging effect on ship hull Typical strength degradation by aging

(1) Corrosion

- a. Corrosion in frame member
- b. Corrosion in plating
- c. Local corrosion

(2) Fatigue crack

(3) Degradation of paint coating

2-1. Typical strength degradation by aging(1)

(1) Corrosion

<u>a. Frame corrosion</u>
b. Plating corrosion
c. Local corrosion

(2) Fatigue crack
(3) Coating degradation

Corrosion wastage in deck longitudinal of WBT, with poor fillet weld and sharp edge at depth end. (aged 15 years)

PAJ-2003 Symposium

2-1. Typical strength degradation by aging(2)

2-1. Typical strength degradation by aging(3)

grooving corrosion along fillet weld of deck longl.

NMRI

PAJ-2003 Symposium

Wastage/Pitting.

TYPICAL WASTAGE PATTERNS

COATED STRINGER.

Cutouts, Often Leading

TYPICAL PITTING AND GROOVING

- UNCOATED STRINGER.

to Fracturing

2-1. Typical strength degradation by aging(4)

12

2-1. Typical strength degradation by aging(5)

Stress vs. strain curve of aging plate;

- a) Cut-out and flushed
 specimen shows no less
 ability to virgin plate.
- b) Apparent drop in S-S curve for aging plate is by surface roughness due to corrosion.

(a) Trend in degradation mode (b) Trend in number of failures

PAJ-2003 Symposium

NMRI

Aging effect of ship hull Hull plate corrosion data properties

Corrosion rate analysis by using class NK database

Structural Me		50% level				95% level				
	Tk.	5yrs.	10yrs.	15yrs.	20yrs.	5yrs.	10yrs.	15yrs.	20yrs.	
Upper Deck Plat	СОТ	0.00	0.52	1.03	1.33	0.82	1.93	2.63	3.14	
11		WBT	0.00	0.00	0.79	1.06	0.51	1.15	1.59	1.92
Deck Longitudina	als	СОТ	0.00	0.34	0.82	1.06	0.51	1.21	1.64	1.95
11		WBT	0.00	0.00	0.63	0.96	0.00	0.99	1.46	1.82
Bottom Plate	Bottom Plate			0.74	1.16	1.43	1.02	2.11	2.78	3.27
11	11			0.00	0.88	1.28	0.30	1.53	2.35	2.96
Bottom Longl.	Web	СОТ	0.00	0.00	0.68	1.00	0.27	1.04	1.50	1.85
11	//	WBT	0.00	0.00	0.68	1.00	0.00	1.03	1.50	1.85
"	Flange	сот	0.00	0.00	0.77	1.01	0.59	1.24	1.64	1.94
11		WBT	0.00	0.00	0.53	0.91	0.00	0.93	1.40	1.77
Side Shell Plate		СОТ	0.00	0.00	0.78	1.03	0.44	1.16	1.60	1.92
		WBT	0.00	0.00	0.69	1.20	0.00	1.11	1.66	2.09
Side Longl.	Web	СОТ	0.00	0.00	0.59	0.94	0.29	1.02	1.46	1.81
11	//	WBT	0.00	0.00	0.44	0.87	0.00	0.97	1.41	1.76
"	Flange	СОТ	0.00	0.00	0.58	0.94	0.00	0.98	1.44	1.80
"	//	WBT	0.00	0.00	0.48	0.89	0.00	0.92	1.39	1.75
Longitudinal Bhd	СОТ	0.00	0.00	0.84	1.10	0.55	1.19	1.63	1.96	
//		WBT	0.00	0.33	0.81	1.04	0.56	1.24	1.65	1.95
Longi.Bhd.Longl.	Web	сот	0.00	0.00	0.54	0.92	0.27	1.01	1.45	1.79
<i>II</i> .		WBT	0.00	0.00	0.54	0.92	0.25	1.01	1.44	1.79
"	Flange	сот	0.00	0.00	0.62	0.96	0.34	1.04	1.48	1.82
		WBT	0.00	0.00	0.44	0.94	0.00	0.97	1.75	2.45

2-2. Hull plate corrosion data properties (2)- example for deck structure -

Allowable diminution Level by Class Society spec.

Structural Member	Allowable Diminution Level		
-Shell plates -Strength deck plates -Slab longls on shear strake and stringer plate of strength deck -Tight bulkheads in deep tanks -Inner bottom plates	20% of original thickness + 1 mm		
-Floors and girders in double bottom -Primary members (web & face) -Web, face and bracket of hold frames -Watertight bulkhead plates	25% of original thickness		
-Web, face and bracket of frames (excluding hold frames), longitudinal beams and stiffeners -Effective deck plates -Hatch cover and hatch beam	30% of original thickness		

MRI

Aging effect of ship hull Reduction in mid-ship section modulus

Estimated results on average tendency of the VLCC mid-ship section modulus;

- (1) IMO requirement : within 10% loss of Z
- (2) Average corrosion damage is within IMO requirement.

Note:

analyzed ---- imaginary scatter

Service Year

3. Failure strength of aging tanker hull 3-1. Basic mechanism of large-scale hull failure

3-1. Basic mechanism of large-scale hull failure As to hull break-up mode

Trigger element for tanker hull break-up ;

- (1) Buckling/collapse at Deck structure in Sagging
- (2) Crack propagation at Bottom structure in Sagging
- (3) Crack propagation at Deck structure in Hogging (multi-site damage)
- (4) Buckling/collapse at Bottom structure in Hogging
 - i) break-up occurs in high wave ; Sagging M.> Hogging M.
 ii) deck back surface is the most severe corrosive space in hull circumstances, and so forth.

3-2. Case study Loading pattern at the Nakhodka casualty

Loading pattern at the casualty ; excess to a standard loading pattern

No.5 P.W.T. 0 (0)	1,	P.W.T. 300 8.5)	No.3 P.W.T. 1,307 (1,420)		No.2 P.W.T. 1,263 (0)		No.1 P.W.T. 440 (408.5)		
No.9 C.T. 590 (1,543)	No.8 C.T. 1,417 (1,543)	No.7 C.T. 1,432 (1,543)	No.6 C.T. 1,418 (1,543)	No5 C.T. 1,416 (1,543)	No.4 C.T. 1,372 (1,543)	No.3 C.T. 1,370 (1,581)	No.2 C.T. 1,345 (1,581)	No.1 C.T. 88 (921)	
No.5 S.W.T. 0 (0)	1,	S.W.T. 302 8.5)	1.1	S.W.T. 301 420)	1	S.W.T. 257 0)	No.1 S 60 (408	1	

Loading Patterns

values : Load (in kl) at the casualty () indicates a standard condition.

PAJ-2003 Symposium

3-2. Case study

Corrosion wastage at the Nakhodka casualty

Measurement result ;

20-35% of plate thickness reduced due to corrosion

Structural member	Original thickness	Thickness reduction	Remarks		
Bottorn plate	20 mm	6 mm	based on the average of measured data around Fr. 157		
Side shell	17 mm	6 mm	measured data are limited, and considered to br the same as bottom plating		
Deck plate of center tank	20-24 mm	4 mm	based on the measured data in 1993		
Deck plate of side tank	20-24 mm	7.5 mm	based on the average of measured data		
Deck longitudinal	14 mm	5.5 mm	based on the average of measured data		
Other members	11-14 mm	3 mm	measured data are scattering between 2 mm and 4 mm		

3-2. Case study Applied force at the Nakhodka casualty

VBM and VSF were obtained by using non-linear ship motion and response simulation software.

Still water shearing force and bending moment for the Nakhodka

PAJ-2003 Symposium

MRI

3-2. Case study

Simulation cal. on ultimate collapse of Nakhodka

3-2. Case study *Estimated results on load and strength*

Causes of the Nakhodka casualty;

NMRI

- (1) *Excessive corrosion* made the Nakhodka's vertical bending strength about one half to that of as built.
- (2) So, the most *severe wave load* in a year at Japan sea, let her broke up.
- (3) In addition to the above, the *non-standard loading pattern* at the accident had enlarged the wave load.

4. Conclusions

- (1) Large-scale oil spill from tankers were not yet exterminated. And one critical factor must be hull excessive corrosion that might be overlooked, so that it should be strongly required strict implementation of the ESP and excluding sub-standard tankers.
- (2) From the analysis of corrosion measurement data at the classNK inspections, not only average wastage rate but also increase of standard deviation of the rate are key factors to understand the ship ageing and the influence.
- (3) As to hull breaking up, it seems that excessive corrosion and severe wave condition are two main players and a possible trigger failure might be a buckling/collapse of deck structure at the time of high wave of sagging.

In anyway more actions are necessitated, not only to prevent casualties but also to mitigate the oil outflow and the damage of the ocean, to keep our global environment clean.

