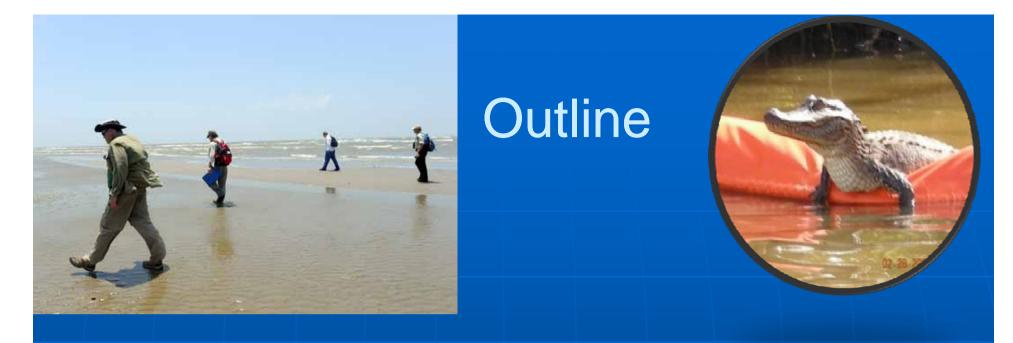
Shoreline Response Challenges following the Deep Water Horizon Incident

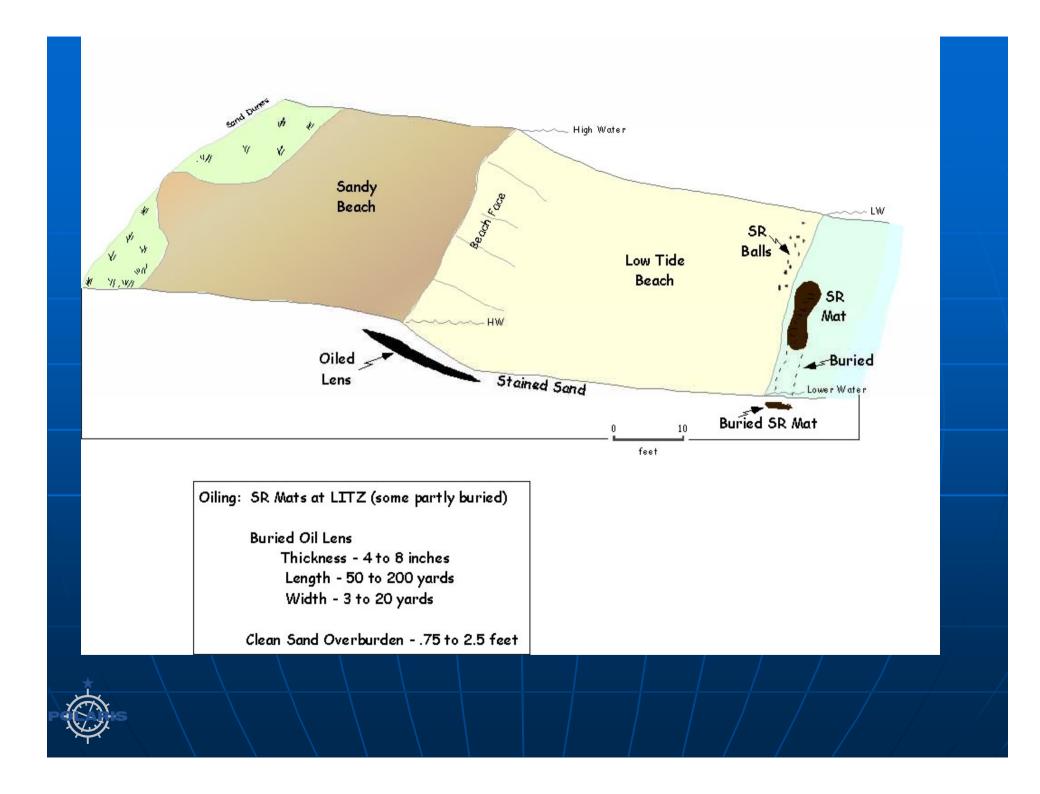
Ed Owens Polaris Applied Sciences, Inc.


PAJ Oil Spill Workshop 2 March 2011

Disclaimer

The opinions expressed in this presentation are those of the author alone and do not represent statements, positions or opinions of Polaris Applied Sciences, Inc., BP, or any other entity or agency involved with the Deepwater Horizon response operation.

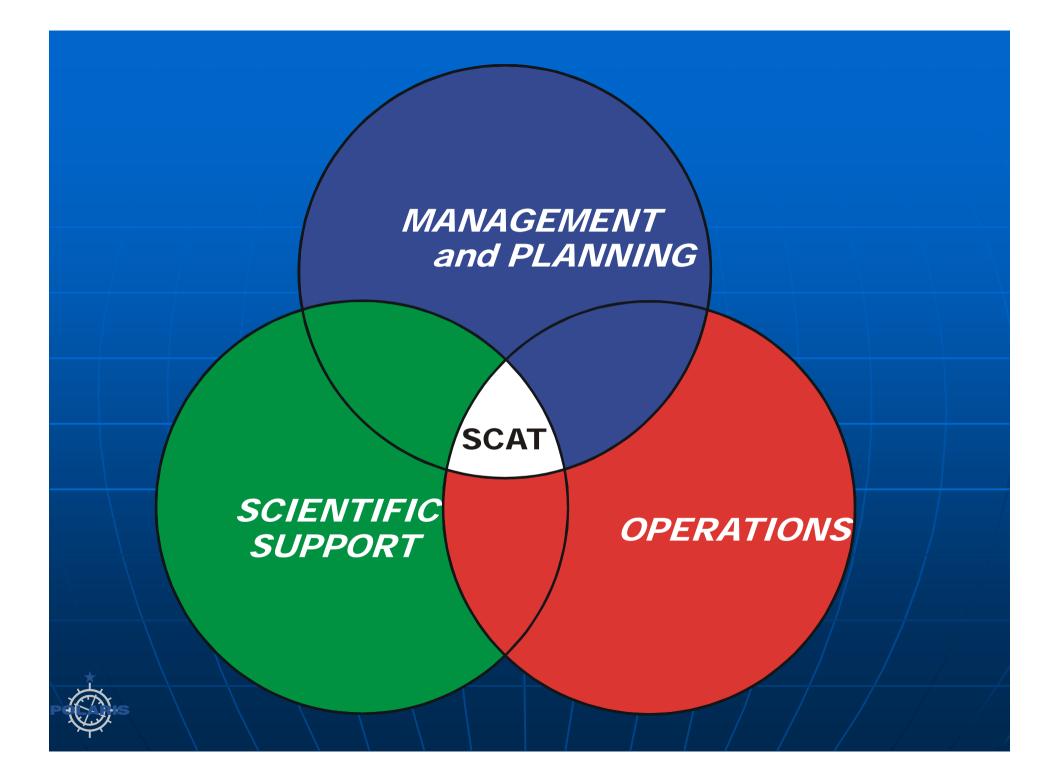
- key shoreline response elements
- Operations Support STRs
- Operations Support SCAT Ops Liaison
- Treatment inspections


Treatment of amenity sand beaches

Key Elements

 Time and space challenges
 Chronic phase lasted 6 months until the well was sealed – oil was buried

 Operating area extended over 2000 miles along the coast
 Repetitively surveyed over 4,000 miles of shoreline


The Objective of a SCAT Survey/Program

The primary purpose of SCAT (<u>Shoreline</u> <u>Cleanup Assessment Technique</u>) is to provide:

DECISION SUPPORT FOR SHORELINE TREATMENT PLANNING AND RESPONSE OPERATIONS

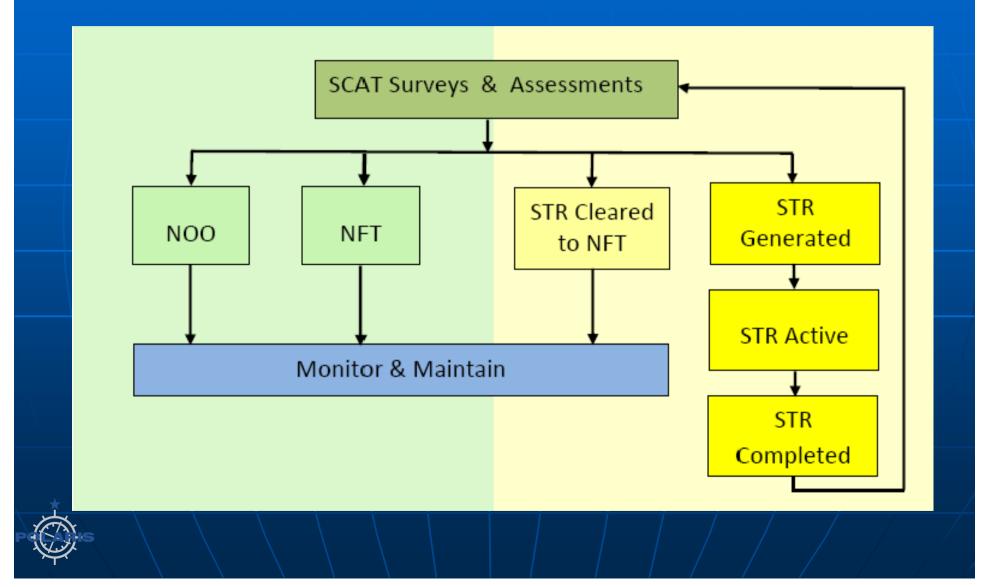
The Four SCAT Principles

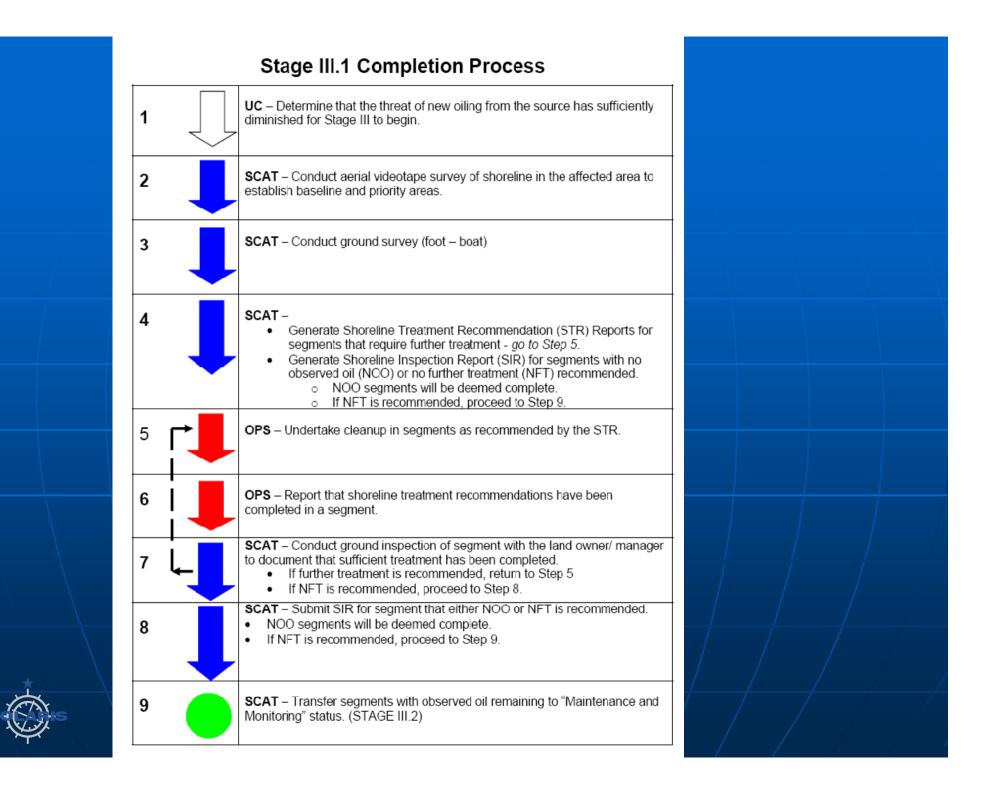
A systematic survey of all shorelines in the affected area Division of the coast into segments Use of a standard set of terms and definitions for documentation A team of interagency personnel to represent land ownership, land use, management or trustee interests

SCAT Field Data

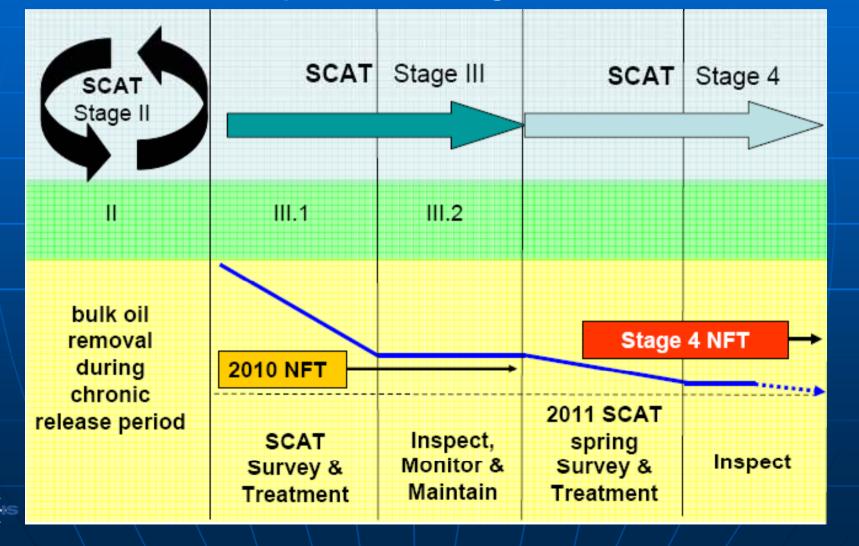
	LAPLOI-0	#1-18,30	LAPLE	11-246-21	4						
SHORELIN	EAPLOI - D		LAPLO	1c-23	2		S	pill P	age	1 of -2	2
SHOREE	E OILENG SOM		Date (dd/m		ine (24h	standard	davlie	ht)	Ť	Tide H	cipht
Course of ID.	LAPLOITON				-					L/M	(HD)
	ener Grand en		13/04	1000	9:00	esto //	00 h	#5		H/M	L/L
	Fool / Boat / Helis			1 Sur	Cloud				Wind	ły	
Salvey Dy. (Cool / Doar / Hels	Name		Organizat				Phone	Num	ber	
1000	Mr Son		Paul	aris							
	Schromine	-		AA-D	SPR						
	eris man			E.Q							
mike	Jednines		54	60		\rightarrow					
_						_	-		0.004		
			/yd Len	igth Surveye	d2	m/yd		um: W	0384	00	
Start GPS: End GPS:	LAT 29.3	1444			ONG_8						
EBa GPS:	LAI	Select only Of	TC Dates on						those	bolio	
	Rocky Cliffs	Select dely Of	NE PRIDAR	(r) === A.	Ripta		ca. Cu	ACLE.		cura.	
		nade Structures				sed Tida	Flats				
	Wave-cut Platfo					ered Roc		ores			
ØP	Fine-Medium g		ches		Shelt	cred Ma	n made	: Struc	tures		
-	Coarse-grained					ered Tid	al Flats	5			
		d Gravel Beaches	5	5	Wet	ands	_				
	Gravel Beaches		1.1		Othe		_				_
			1 Debris? 1		Ty	× veg.	gaine	ige 🗛	nount	1000'5	bags
Direct backsh	hore access? Yes	/No Access de	scription/r	estrictions_		0. Nov 1	No	_			
Alongshore a	ccess from next s	legment? (Ye) / I	No Suite	ith "A" in th	e sugns	r (10a) ridal zor	Dec .				
		Oil Cover	Dega wi			1	-		_		
Zone Shore	Tidal Zone	Length Width	Diete	Oil Thickness Oil Chara						cter	
ID Type	LIMIUUSU			CV CT	ST	L FR	MS	TB	TC	SR.	AP N
AS	XXXX		18 12	XX	X	100	X	X,			
BS	XX	1200 15	3 3	X QUZ	X		X	00			
05	XX	450 10	25 16	XX	X	68	X	17			
05	XX	1300 1-15	5 X	XX	X	-	4 X	KZ.	-		_
E strop	8 ×	100 3	12 0	XX		14	4 🚓	1 ×	-		-
1= 5/147	XX	300 2	/	: letter of Za	IX I	X I	1X				
		Trensh	Oiled		fice Oil			Water		Sheen	Clear
Treach No.	Tidal Zone	Depth	Interval		-			Table		Color	Below
	LIMIUI	SU em/in em	s-cm/in-in	OP PP	OR O	FTR	No	an/i	4	B,R,S,N	Yes/1
	+++			+++	-	-	\rightarrow	-	+	_	<u> </u>
	++++	++	_	+++		-	\vdash		+		
		+ +		+++					+		<u> </u>
						-			+		-
				+							
	Clean	sup Recommen	dations; E	cological/l	tecreation	ual/Cal	iteral I	ssues/	Wilds	life Obse	evation
E-acc 1	and della	and has	· · · · · ·	Man	sector.	Sack	culd	6.23	Series	6120	
accele	wating burgs sandy terb	1 afail.				. da			ر کان	of all.	Erisa
D Mostly	Sandy tarb	alls-varies	200- 4	1 77 10%	cover	WIGH	200	~ P	W12 -	1	
2 0 SA	ind wriat.	are break ve	what a	orber + St	sie he	ing ba	ridd 1	1.54	si.1	Up and	tens
Rock -	(pooling oil.	Lored. Eu	ndence +	101 001	128	10.00	in car	P.M.	1100		
Sketch: Yes	No Photos	Yes No Ph	otographe	r Name: k.	in the	$r \in \mathbb{R}^{d}$	Schra	land	T	PWIGH	an.
	nuction (la	ind building	DAGA	Sant	DEIN	Dave.	ê bu	hee	14	14. 1/ 10	int o
$D (A \land C \models$		Stere & Bas	Li L Las	1 cont	South?	. Hhe	n Sur	WS-12 IP	12	y ma	T .
DCONST	tiound on	I WEAR DISIDE									
D Const and a	how los	Kend to Ves	entra	Sharles	6 - 000	hets +	1 000	let :	1.	une 200	<i>39</i>
and a 2) TOASI	non loom	Seva toves	272.725	SHARELIN	6 + 004	hets in	1 000	lek :	. J	une 200	99
and and a	non loom	send to vog	272.725	SHARELIN	6 + 004	hets in	1 000	lek i	.;) J	une 200	99

SCAT survey data shows that there is either:

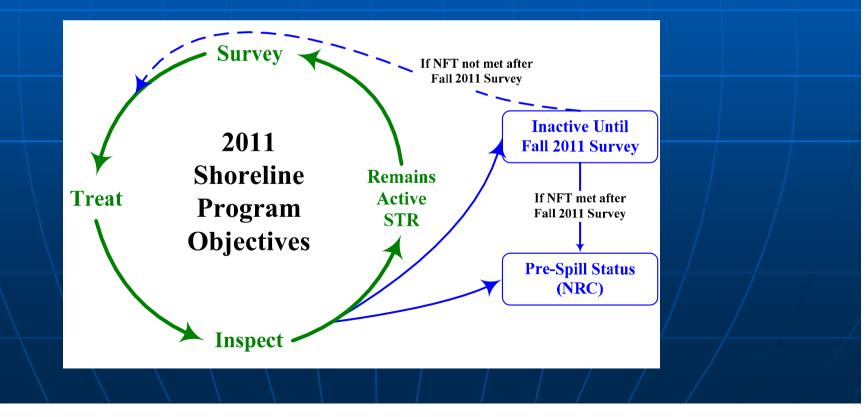

NO OBSERVED OIL (NOO)

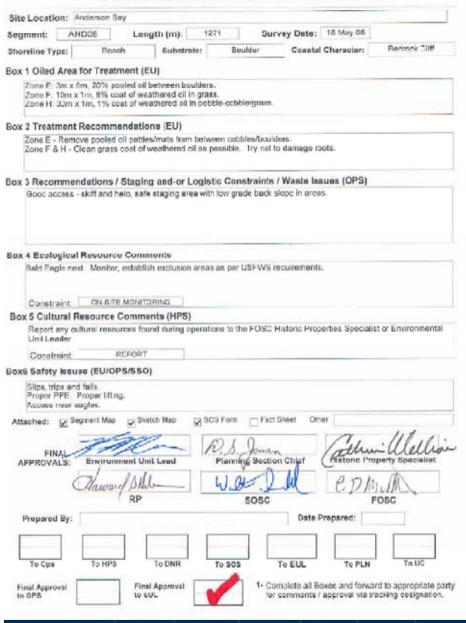

Oil is present but is below the agreed treatment standards = NO FURTHER TREATMENT required (NFT)

Oil is present and is above the agreed treatment standards so that a SHORELINE TREATMENT RECOMMENDATION (STR) is generated


SCAT Cycle

2010-2011 SCAT Activities


A sequence of stages


2010-2011 SCAT Activities

In reality a sequence of repetitive activities

- Survey
- Treat (cleanup)
- Inspect

Shoreline Treatment Recommendation Transmittal Form

STR Form

 generation of the form includes Section 7 and Section 106 reviews as well as FOSC, SOSC and RP approval

this form is a "Permission to Work" for Operations and is part of the ICS 204 process

Shoreline Treatment Recommendations – MC 252 Sand Beach Treatment Working Group (TWG) Marsh/Mangrove TWG Man-Made Solid/Rip Rap TWG The three TWG reports are attached to the "MC 252 SCAT - Shoreline **Treatment Implementation** Framework" which is the agreed survey/treatment program for each state

Deepwater Horizon MC252

Shoreline Treatment Recommendation Operational Permit to Work

STR Local Nam	e:Racoon Island	ST	FR #: 169	Survey Date: 31-Aug-2010		
Segment Name	Stan LAT	Start LONG	End UAT	End LONG	Length (m)	
LATB03 - 001-10	29.05531	-90 937548	29.052366	-9C.95155	2224	
LATB03 - 002-10	29.049715	-90.917152	29.053877	-90.935894	8051	
LATB03 - 060-10	29.06217	-90.94728	29.06812	-90.95683	2593	

Total Length: 12868 metars

Location: Recoon Island (main island and western spit)

Shoreline Type: Fine- to medium-grained sand beach

Sheltered tidal flats Riprap

Oiled Area For Treatment:

Zone A: 180 m x 2 m of 2% distribution of Surface Residue (SR) in the upper intertidal zone on the NW back size of the island

Zone B and C: 2.5 km x 4 m band of 1-3% distribution of Surface Residue Balls and Patties in the upper and supratidal zone all along the Gulf beach

Zone D: Small patch (5 m x 1 m) of 30% distribution Surface Residue on the eastern end of the beach Zone E: Patch (25 m x 0.5 m) of 40% distribution of Surface Residue

Zone F: Patch (3C m x 1 m) of 20% distribution of Surface Residue on the western end of the spit

Cleanup Recommendation:

Manual Removal of patches of surface oil residue that are stranded in the supratidal zone, including SR "balls" and "patties" and oiled beach wrack. Strictly minimize removal of clean sand. Focus on areas with larger and heavier accumulations of oil. No mechanical equipment to be used on the island. No foct traffic or equipment in dune or marsh areas; do not disturb any vegetation. Do not disturb or remove heach wrack that is not oiled. Do not enter or work in the area landward of the dure rending unless specifically authorized and accompanied by a LDWF biologist.

Cleanup teams should be deployed in clusters to work a specific area, rather than be spread over large lengths of beach. These clusters should work systematically from one end of the island to the other. Following the completion of cleanup operations, staging areas should be restored to natural or preexisting conditions.

Guidelines for No Further Treatment will be no oil >1% distribution of Surface Residues.

Staging and Logistics:

Access is very restricted because of the large nesting colony and other contraints. Therefore, access to and work on the latend can only be done uncer the direct supervision of the La Department of Wildlife and Fisheries staff. Contact Cassidy Lejune 337-864-1312 or Todd Baker 225-281-2066 to schedule work on the island. Access will be vary restricted, therefore there will need to be careful planning for logistics and operations on the island.

Ecological Concerns:

Raccon Island is part of the Isle Deniere's Barrier Island's Refuge managed by the Louisiana Department of Wildlife and Fisheries. Numerous nesting birds and migratory shorebirds occur on the Island's in this area. Piping plover, a federally isled species, occurs in the area. The sand beach is Designated Critical Habitat for winnering piping plover under the US Endangered Species Act. Follow the threatened and endangered species BMPs specific to this site, including the attached guidance for avoiding nesting birds and migratory shorebirds during shorebine clean up on sand beaches.

Cultural / Historical Concerns:

Follow the attached Cultural Resource BMPs specific to this STR.

Safety Concerns:

Follow all established safety plans.

Operations Support – SCAT Ops Liaison

- communication between SCAT (EU-Planning) and Operations is relatively straight forward on most spills
- as scale increases so Span Of Control requires an adjustment
- SCAT Ops Liaison set up on the MC 252 to bridge the widening communications gap

Treatment Inspections

- Typically, SCAT teams inspect with land owners/managers to ensure that treatment recommendations have been met and a segment can go to an NOO or an NFT status ("Maintain and Monitor")
- On MC 252, this is for a 2010 NFT condition, to be followed by a "winter M&M", and a "Spring 2011 SCAT" resurvey – not unlike "Exxon Valdez" 1990-1992

M/V Selendang Ayu

Segment Inspection Report Shoreline SCAT Team () Members +MR-01 Segment ID If no further treatment is required, each UC rep sign below. Inspection Signature Date of Survey 22 Apr 05 Name RUTH YOUDER Kinh Olin FOSC rep Report Time of Survey SOSC rep **Tide Stage** RP rep Weather Spini Nelson (SIR) YES / NO Inspection Completed Along Entire Segment? Treatment Endpoint Criteria: Very light oil, widely scattered for spots. UC Reps signatures "An NFT with a Is treatment or further treatment required? (circle one) YES - define below specific treatment action(s) and specific locations within the small amount segment where required. Provide sketches, maps, GPS coordinates to OPS. of oil that was NO - each UC rep sign appropriate signature box above below the end-NFT Comments: point criteria" land owner/manager comment box

RP

FOSC

SAND BEACH ISSUES

Sand beaches are the "easiest" shore type to clean yet they pose the biggest problems today in the Gulf of Mexico !!

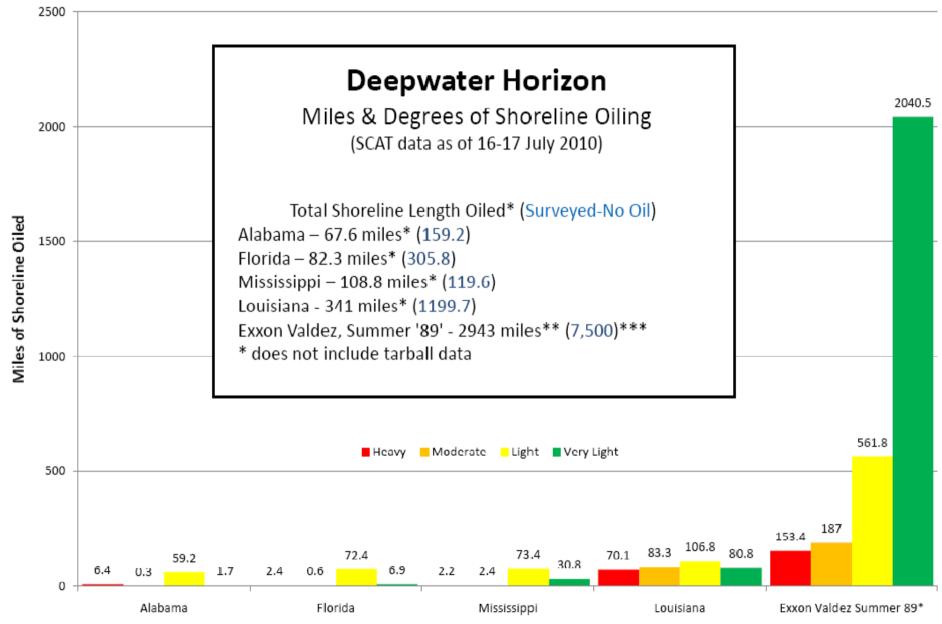
- To treat or not to treat ?
- When is enough and what is feasible?
- How to minimize morphodynamic impacts ?

Shoreline Survey Data 18 July 2010

LOUISIANA								
Shoreline Habitat	Total Surveyed	Heavy	Moderate	Light	Very Light	Trace (<1%)	NOO	Oiled as of Last Survey
Beach	161	24.6	12.5	33	22.8	10	58.1	102.9
Marsh	1356.1	30.5	71.6	70.7	62.9	U	1112.4	243.6
Other	84.5	2.3	2.9	4.6	5	0.9	68.7	15.8
Totals	1601.6	65.3	87	108.4	90.7	10.9	1239.2	362.4

ALABAMA - MISSISSIPPI - FLORIDA

Beach	542.7	12.4	2.6	19 0 .7	27.5	3.0	306.4	236.3
Marsh	188.1	0.0	0.0	0.0	1.9	0.4	177.8	10.3
Other	127.6	0.4	0.6	10.5	8.8	0.0	107.2	20.4
Totals	858.4	12.8	3.3	209.2	38.2	3.4	591.5	267.0


COMBINED	2460.0	78.1	90.3	317.6	128.9	14.3	1830.7	629.4

Louisiana coastline ~ 7,700 miles: ~ 5% oiled

(miles)

heavy + moderate marsh = ~ 1.5%

**Neff, J.M., E.H Owens, S.W. Stoker, and D.M. McCormick. 1995. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill. In: Wells, P.G., J.N. Butler, and J.S. Hughes, eds. Exxon Valdez Oil Spill: Fate and Effects in Alaskan Waters, ASTM STP 1219. American Society for Testing and Materials. Philadelphia, PA, pp. 312-346.

*** Personal communication, Dr. Ed Owens, Polaris, June 2010

SAND BEACH TREATMENT OPTIONS

- Manual removal shovels, rakes, sifters
- Mechanical removal small scrapers, sifters
- In situ treatment mixing, sediment relocation
- Ex situ treatment washing, oxidation, thermal

SAND BEACH ISSUES

How to....

- clean when beaches in daily use ?
- treat stained sands ?
- treat buried oil ?
- deal with nearshore submerged oil ?

SAND BEACH ISSUES – 1

How to clean when beaches in daily use?

- Night operations
- Remove as soon as oil washes ashore

Operations Constraints – for example

- No mechanical techniques allowed in some areas
- No disturbance below 18" (yet oil present down to 24-26")

SAND BEACH ISSUES - 2

How to treat stained sands?

- Sediment relocation to water line
 - Rapid and high volume
 - no loss of sand
 - Non invasive (no footprint)

Sand treatment machines

- Rapid and high volume
- No loss of sand
- Machines for sand transfer and beach footprint

SAND BEACH ISSUES - 3

Buried oil in dynamic sand beaches? Location of subsurface oil: • Pits, trenches, mechanical, augurs thousands of pins flags Scale of the Problem • About 600,000 – 700,000 cubic yards treated on ~12 miles of Fourchon-Grand Isle-Grand Terre beaches in LA • Some 30+ miles of subsurface oil on high use

amenity Gulf states beaches

SAND BEACH ISSUES - 4

How to deal with nearshore submerged oil ?
First have to find it – "snorkel SCAT"
Poor visibility in LA
Vacuums, snares, ?, ?

At the End of the Day...

... it is not the shore type nor the amount of oil that really matters !

The driving forces behind the decision process for sand beaches are public use and public perception.

Anywhere people live on the coast there are high use amenity sand beaches!!!

