

Technical Developments In The Application Of Oil Spill Response Strategies 2017 PAJ Oil Spill Workshop

© Copyright 2016. Oil Spill Response Limited

Technical Development

- The majority of development has been associated with Information Technology, where;
 - Smart technology replaces less advance
 - Technology is added to augment existing systems
 - New technology provides new solutions

Technical Development

> But many things have also stayed the same

© Copyright 2016. Oil Spill Response Limited.

The People Element

- People are still the most important asset in a response, they;
 - Manage the incident
 - Make decisions
 - Implement actions
- Therefore we need to ensure Responders are competent

© Copyright 2016. Oil Spill Response Limited.

How Technology Helps Decision Making - From An Art To A Science

- Many decisions in a response are 'nonstructured decisions' where there can be several 'right" answers
- These decisions need to be made by people
- People rely on technology for decision support, which helps people by;
 - Collecting and processing data e.g. Aerial Surveillance/ Fluorometry
 - Computational tools e.g. modelling
 - Presenting information e.g. GIS
 - Telecommunications e.g. email

What Will Technology Do For Us In 20yrs?

A decision involves;

- Intelligence: Find or recognize a problem, need, or opportunity.
- Design: Considering possible ways of solving the problem, filling the need, or taking advantage of the opportunity. Develop all possible solutions you can.
- Choice: Examine and weigh the merits of each solution, estimate the consequences of each solution, and choose the best one.
- Implementation: Carry out the chosen solution, monitor the results and make adjustments as necessary.

Today technology informs us

Will it one day provide recommendations? Or make decisions for us?

The Responder's Best Friend

The Responder's Best Friend

Three Key Areas Of Technological Progress

Dispersants

Surveillance, Modelling and Visualisation

Dispersants

Post Macondo Oil Spill Research

- Four Program Areas
- Dispersant Advocacy
- Subsea Dispersant Effectiveness
- Dispersant Logistics & Preplanning
- SMART/Post-Spill Monitoring Protocols
- Additional focus on Dispersant Regulatory Approval

- Four Work Streams
- Improving Dispersant Communication Tools
- Assessing Research Efforts and Needs
- Subsea Injection of dispersants
- Review of Surface Application Techniques

Development of Bench Scale Subsea Dispersant Effectiveness Test (IPIECA / IOGP)

SINTEF (Norway) & Cedre (France) ran parallel testing programs

 A goal was to bridge the gap between real world and existing tests

Demonstration of Subsea Dispersant Effectiveness (API)

OHMSETT Facility, New Jersey, July, 2014

Funded by API Joint Industry Task Force

© Copyright 2016. Oil Spill Response Limited.

Subsea Dispersant Application

- Subsea application of dispersant at the wellhead is an integral part of capping operation
 - Creates safer working conditions for response personnel
 - Enhances the degradation of the oil

- Global Dispersant Stockpile
 - Total stock of 5000 m³ to serve the initial phase of a major offshore incident (~30 days)

Aerial Application - From Turboprop to Jet

Advantages of Jet platform

- Faster transit times
- Greater range
- More costs effective
- Less demand on personnel resources

- Added technology
 - Data capture of
 - Time/ date sprayed
 - GPS Location sprayed
 - Quantity sprayed

Advances in Oil Spill Modelling

Advances in Oil Spill Modelling

Massive increase in computational power

- Faster modeling
- Greater number of complex calculations
- More advance modeling software
 - Not just 2D surface anymore
 - More input parameters
 - Inclusion of response options
- Better source data
 - Met-ocean data
 - Dispersion data from scientific test
 - Tweak with actual field data

3D Operational Plume Modelling

© Copyright 2016. Oil Spill Response Limited.

3D Operational Plume Modelling

Example Of Advancements In Modelling

- Improved understanding of the way dispersants work
 - Able to predict the impact of different dispersant strategies
 - Better Decision support

il Spill Response

There Is No Better Way To Predict How An Oil Spill Will Evolve Than Oil Spill Models – But!

- Oil spill modelling is NOT a solution. It is a tool for providing information to support decisions
 - The biggest errors in oil spill modelling are caused by bad input data
 - Ocean current forecasts are very challenging due to being so complex
 - If the ocean current forecast is wrong, then an oil spill forecast will also be wrong
 - For sophisticated modelling you need specialist modellers

Advances in oil spill surveillance

Overview of surveillance tools Surface and Subsurface

Surface Surveillance Aerial - OSRL UKCS Aircraft

Surface Surveillance Aerial - Perimeter Mapping

Surface Surveillance OSRL Radar Satellite Imagery Service

- ✓ Wide coverage
- ✓ Weather independent
- Proven technology
- ✓ Keeps response teams out of harms way
- ✓ Compliment aerial surveillance
- GIS ready products
- Does not discriminate between thin or thick oil
- Very low or high wind speed issues
- Interpretation requires a skilled analyst
- Imagery prone to false positives due to other sea dampening phenomena Satellites take time to orbit

Surface Surveillance Unmanned

Utilising unmanned platforms i.e. Unmanned Aerial Vehicles (UAVs) and tethered balloons to;

- Improve efficiency of shoreline survey teams (SCAT)
- Improve encounter rates offshore

Visualising Response Data

- Accepted and integral component of effective oil spill response (JIP)
 - Provides strategic information
 - Presents lots of data in one place
 - Make complex data more accessible, understandable and usable
 - Allows for communication of data to others
 - Bring out trends, patterns and correlations that might go undetected in textbased data
 - Help make robust decisions on the data

Visualising Response Data

Staying in touch

www.oilspillresponse.com

Subsea Well Intervention Service

www.swis-oilspillresponse.com subseaservices@oilspillresponse.com

Training courses

www.oilspillresponsetraining.com training_uk@oilspillresponse.com training_sg@oilspillresponse.com

Find us on

- www.facebook.com/OilSpillResponseLimited
- www.linkedin.com/company/oil-spill-response-Itd
- www.youtube.com/user/OilSpillResponseLtd
- www.twitter.com/oilspillexperts

Spill preparedness (Technical handbooks and other reference materials)

osrl.cotoco.com
preparedness@oilspillresponse.com